Fission Nuclear Electric Propulsion and MagOrion: Toward an Interstellar Capability

Roger X. Lenard
Sandia National Laboratories
Dana G. Andrews
Andrews Space and Technology

Outline

- Historical Perspective
- Assessment of Systematic Problems
- Prior Solution
- . MagSail Answering the Difficult Issue
- Performance Potential
- Summary

Historical Perspective

- . Attended 1996 CalTech Interstellar Conference
- . Numerous High Technology Schemes Proposed
- Appeared to be Extremely Long-Term and Very High Risk
- Some did not Appear to be Achievable Even in Long-Term
- Evaluated Potential of "Forward Runway" Concept to Fission NEP
- Presumed Macro-Particle Accelerator Provide U-235 for Acceleration from Earth and Deceleration at Target Star System .
- Involved Very Large Masses of U-235 on Spaceship to Decelerate at Target Star System (-12,000 T)

Systematic Problems

- Technology Issues:
 - High Power Macro-Particle Accelerator
 - 20 TW Beam Power
 - Accelerate 12,000 T U-235 to 0.1c in few Months
 - Extremely High Power Density Nuclear Electric Propulsion System: a-1 X 10⁻⁴ kg/kWe
 - Continuously Fuel-able Reactor
 - Fission Products as **Ion** Propellant
 - U-235 "Catcher's Mitt" on Spacecraft
 - High Efficiency Ion (Fission Product) Engines
- Crewed Spacecraft weight: 200T
- Total Spacecraft weight: 1000T
- Maximum speed: 0.1c
- Subject to Unknown. Aiming Errors for Particle Accelerator
- Bulky and cumbersome but appears to work
 The Primary Problem is Decelerating at the Target System

Acceleration Issues

- Fission Fragments for Ion Engine Propellant
- Total System Balance Requires Specific I,,
 - Vex = SQRT($2*\eta_{th}*\eta_{pr}*\eta_{ion}*8.64E13$)
 - Vex = 1.314e07*SQRT($\eta_{th} * \eta_{pr} * \eta_{ion}$)
 - I_{sp} = 1.34* SQRT($\eta_{th} * \eta_{pr} * \eta_{ion}$) * 10⁶ sec
 - M_{dot} = Pwr/(2*Ef* η_{th} * η_{pr} * η_{ion})
 - Thrust = $m_{dot}Ve = m_{dot}SQRT(2*E_f*\eta_{th}*\eta_{pr}*\eta_{ion})$
 - $m_f = m_i * exp(\Delta V/gI_{sp}) = m_f e(3X107/SQRT(2*E_f * \eta_{th} * \eta_{pr} * \eta_{ion}))$
 - Thrusting time: = mf-mi/(Pg/ $2*E_f*\eta_{th}*\eta_{pr}*\eta_{ion}$)
- 'Once conversion and ion engine efficiency known all parameters determined
- If complete deceleration by fission power not required, acceleration appears tractable

Specific Impulse vs. System Efficiency

Proposed Transportation Concept Clouds of Oort 0.5 LY 0.36 LY 8.3 yr 3.3 LY 25 yr 33 yr Discard The No-Zone Belts of Kuiper 64.3 Years

Issues Bearing on Problem

- Does a Technological Mechanism Exist to Overcome Deceleration Problem?
- External Systems Require Pre-Deployed Assets at Target Star System
 - Clusters of nano-bots to build system-level accelerator, e.g.
 - Requires use of completely unforeseen capabilities in nano-bots
 - Requires us to get the nano-bots there
 - Must have mapped out target system and resources prior to arrival
 - Competition with Extant Societies?
 - Extremely Complex Solution
 - Still Retain Aiming Problems
 - Never truly independent exploration; years to establish infrastructure
- Proposed Solution: Employ MagSail; Trap Target System Solar Wind for Deceleration

MagSail Concept

Preliminary MagSail Parameters

- Detach Primary Power System From Habitat: Sheds 700T
- Yields 20 MW Power System plus Crew Module
- Unfurl MagSail at 24,000 au
 - Diameter: 300,000 meters
 - Current: 530,000 amp-turns
 - Interstellar Density 100,000
 - Initial Deceleration: 0.5 m/s²
 - Decelerate for 5.7 years to 7,430 km/s
- Increase MagSail Size at 7400 au
 - 1 amp-turn: 265,000 amps
 - Secondary Deceleration: 0.12 m/s²
 - Decelerate to I000 km/s
 - Decelerate for 1 2.2 years
- Begin Final Ion Thruster Deceleration to Star System

Possible Future System Specifications

- Existing Brayton Turbo-Machinery is on Trend Line Toward ~10⁻³ kg/kWe For Large Systems
- Alternator Systems Follow Trend Line of 10⁻³ kg/kWe for Large High Speed Systems
- Reactors (e.g. Pebble-Bed) Could Achieve <10⁻³ kg/kWth
- Radiator (Using Solar Sail Technology?) <10⁻³ kg/kWth
- Advanced Neutral Beam Fusion Injectors <10⁻³ kg/kWe
- Specific Mass ~1X10⁻³ kg/kWe
- Crew Habitat, Baseload Power and Life Support ~200T
- MagSail System 100T
- Total Mass 1000T Yields -700 GW electrical power

Interstellar Performance

- If 10⁻³ kg/kWe Feasible, Accelerator Provided U-235 Yields Acceleration Times of 8.3 Years to 0.1c
- If System Carries all U-235 Acceleration Time -40 Years
 Possibly Impractically Long However no Particle
 Accelerator Necessary
- **Distance is -0.5 LY; Possibly** Feasible with Advanced NPB Aiming
- ~20MW Power System for Housekeeping Power During Trip and Deceleration
- If Power System Masses ~ 10⁻⁴ kg/kWe; No Particle Beam is Necessary and Acceleration Times Short
- Key is **Mag Sail** Performance

Summary

- There's Still No Free Interstellar Lunch
- MagSail Decreases Particle Beamed Mass by 11,200+ T o n s
- Decreases Societal Energy Requirement by ~10²²
 Joules
- Advances in Superconductors Would Help
- Trip time not Inconsistent with Increasing Life Spans
- A Breakthrough in Propulsion Physics Would be Nice